Asynchronous Programming

Getting ready

The current . Futures module provides two subclasses of the Executor class,
respectively, which manipulates a pool of threads and a pool of processes asynchronously.
The two subclasses are as follows:

» concurrent.futures.ThreadPoolExecutor (max_workers)
» concurrent.futures.ProcessPoolExecutor (max_workers)

The max_workers parameter identifies the max number of workers that execute the call
asynchronously.

How to do it...

The following example shows you the functionality of process and thread pooling. The task

to be performed is that we have a list of numbers from one to 10, number 1list. For each
element of the list, a count is made up to 10,000,000 (just to waste time) and then the latter
number is multiplied with the ith element of the list.

By doing this, the following cases are evaluated:

» Sequential execution
» Athread pool with 5 workers

Consider the following code:

#
Concurrent.Futures Pooling - Chapter 4 Asynchronous Programming

#

import concurrent.futures
import time

number list = [1,2,3,4,5,6,7,8,9,10]

def evaluate item(x):
#count...just to make an operation
result item = count (x)
#print the input item and the result
print ("item " + str(x) + " result " + str(result item))

def count (number)
for i in range(0,10000000) :
i=i+1
return i*number

130

Chapter 4

if name == " main ":

##Sequential Execution
start time = time.clock()
for item in number list:
evaluate item(item)
print ("Sequential execution in " + \
str(time.clock() - start time), "seconds")

##Thread pool Execution
start time 1 = time.clock()
with concurrent.futures.ThreadPoolExecutor (max_workers=5)\
as executor:
for item in number list:
executor.submit (evaluate item, item)
print ("Thread pool execution in " + \
str(time.clock() - start time 1), "seconds")

##Process pool Execution
start time 2 = time.clock()
with concurrent.futures.ProcessPoolExecutor (max_workers=5)\
as executor:
for item in number list:
executor.submit (evaluate item, item)
print ("Process pool execution in " + \
str(time.clock() - start time 2), "seconds")

After running the code, we have the following results with the execution time:

C:\Python CookBook\Chapter 4- Asynchronous Programming\ s>python
Process pool with concurrent futures.py

item 1 result 10000000

item 2 result 20000000
item 3 result 30000000
item 4 result 40000000
item 5 result 50000000
item 6 result 60000000
item 7 result 70000000
item 8 result 80000000

item 9 result 90000000
item 10 result 100000000
Sequential execution in 17.241238674183425 seconds

Asynchronous Programming

item
item
item
item
item
item
item
item
item
item
Thre

item
item
item
item
item
item
item
item
item
item
Proc

result 40000000
result 20000000
result 10000000
result 50000000
result 30000000
result 70000000
result 60000000
result 80000000
10 result 100000000
9 result 90000000
ad pool execution in 17.14648646290675 seconds

W O W Ul RN

result 30000000
result 10000000
result 20000000
result 40000000
result 50000000
result 60000000
result 70000000
result 90000000

8 result 80000000

10 result 100000000
ess pool execution in 9.913172716938618 seconds

O 39 0 U BN P W

We build a list of numbers stored in number 1ist and for each element in the list, we
operate the counting procedure until 200,000,000 iterations. Then, we multiply the resulting
value for 100,000,000:

def

def

132

evaluate item(x) :
#count...just to make an operation
result item = count (x)

count (number)
for i in range(0,10000000) :
i=1i+1

return i*number

Chapter 4

In the main program, we execute the task that will be performed in a sequential mode:

if name == "_ main_ ":
for item in number list:
evaluate item(item)

Also, in a parallel mode, we will use the concurrent . futures module's pooling capability
for a thread pool:

with concurrent.futures.ThreadPoolExecutor (max_workers=5)\
as executor:
for item in number list:
executor.submit (evaluate item, item)

The ThreadPoolExecutor executes the given task using one of its internally pooled
threads. It manages five threads working on its pool. Each thread takes a job out from the
pool and executes it. When the job is executed, it takes the next job to be processed from the
thread pool.

When all the jobs are processed, the execution time is printed:

print ("Thread pool execution in " + \
str(time.clock() - start time 1), "seconds")

For the process pooling implemented by the ProcessPoolExecutor class, we have:

with concurrent.futures.ProcessPoolExecutor (max workers=5)\
as executor:
for item in number list:
executor.submit (evaluate item, item)

Like ThreadPoolExecutor, the ProcessPoolExecutor class is an executor
subclass that uses a pool of processes to execute calls asynchronously. However, unlike
ThreadPoolExecutor, the ProcessPoolExecutor uses the multiprocessing module,
which allows us to outflank the global interpreter lock and obtain a shorter execution time.

There's more...

The pooling is used in almost all server applications, where there is a need to handle more
simultaneous requests from any number of clients. Many other applications, however, require
that each task should be performed instantly or you have more control over the thread that
executes it. In this case, pooling is not the best choice.

Asynchronous Programming

Event loop management with Asyncio

The Python module Asyncio provides facilities to manage events, coroutines, tasks and
threads, and synchronization primitives to write concurrent code. The main components and
concepts of this module are:

» An event loop: The Asyncio module allows a single event loop per process

» Coroutines: This is the generalization of the subroutine concept. Also, a coroutine
can be suspended during the execution so that it waits for external processing (some
routine in 1/0) and returns from the point at which it had stopped when the external
processing was done.

» Futures: This defines the Future object, such as the concurrent. futures
module that represents a computation that has still not been accomplished.

» Tasks: This is a subclass of Asyncio that is used to encapsulate and manage
coroutines in a parallel mode.

In this recipe, the focus is on handling events. In fact, in the context of asynchronous
programming, events are very important since they are inherently asynchronous.

What is an event loop

Within a computational system, the entity that can generate events is called an event source,
while the entity that negotiates to manage an event is called the event handler. Sometimes,
there may be a third entity called an event loop. It realizes the functionality to manage all the
events in a computational code. More precisely, the event loop acts cyclically during the whole
execution of the program and keeps track of events that have occurred within a data structure
to queue and then process them one at a time by invoking the event handler if the main
thread is free. Finally, we report a pseudocode of an event loop manager:

while (1) {

events = getEvents() ;
for (e in events)
processEvent (e) ;

}

All the events in the while loop are caught and then processed by the event handler. The
handler that processes an event is the only activity that takes place in the system. When the
handler has ended, the control is passed on to the next event that is scheduled.

Chapter 4

Getting ready

Asyncio provides the following methods that are used to manage an event loop:

>

loop = get event loop (): Using this, you can get the event loop for the current
context.

loop.call later (time delay, callback, argument): This arranges for the
callback that is to be called after the given time delay seconds.

loop.call soon(callback,argument): This arranges for a callback that is to
be called as soon as possible. The callback is called after call soon () returns and
when the control returns to the event loop.

loop.time (): This returns the current time, as a float value, according to the event
loop's internal clock.

asyncio.set_event loop (): This sets the event loop for the current context to
loop.

asyncio.new event loop (): This creates and returns a new event loop object
according to this policy's rules.

loop.run forever (): This runs until stop () is called.

How to do it...

In this example, we show you how to use the loop event statements provided by the Asyncio
library to build an application that works in an asynchronous mode. Let's consider the
following code:

import asyncio

import datetime

import time

def function 1(end time, loop) :

print ("function 1 called")
if (loop.time() + 1.0) < end time:

loop.call later(l, function 2, end time, loop)
else:

loop.stop ()

Asynchronous Programming

def function 2(end time, loop) :

print ("function 2 called ")
if (loop.time() + 1.0) < end time:

loop.call later(l, function 3, end time, loop)
else:

loop.stop ()

def function 3 (end time, loop) :

print ("function 3 called")
if (loop.time() + 1.0) < end time:

loop.call later(l, function 1, end time, loop)
else:

loop.stop ()

def function 4 (end time, loop) :

print ("function 5 called")
if (loop.time() + 1.0) < end time:

loop.call later(l, function 4, end time, loop)
else:

loop.stop ()

loop = asyncio.get event loop()

end loop = loop.time() + 9.0
loop.call soon(function 1, end loop, loop)
#loop.call soon(function 4, end loop, loop)

loop.run forever()
loop.close()

The output of the preceding code is as follows:

C:\Python Parallel Programming INDEX\Chapter 4- Asynchronous
Programming >python asyncio loop.py
function 1 called

function 2 called

function 3 called

function 1 called

function 2 called

function 3 called

function 1 called

function 2 called

function 3 called

136

